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1 The Result

The mutual information rate for M input time series and @) output time series takes the form

| - _i ol det Z(w)
m(I;0) = 47T/d 1 (detg(w)deté(w)> N

Where Z(w) is a 2 x 2 block matrix of the form

2 = | Sonl) Goot)] @)

The elements of matrix C*#(w) are C%#*(w) which are the correlations between the jth o time
series and the kth [ time series, where @ and [ represent either the input or output time series. g(w)
is the upper left hand matrix of Z(w) or in terms of the correlation functions the /T(w)]k element is
LIk (). Similarly, B(w) is the lower right hand matrix of Z(w).

2 One input, two outputs
In the case of one input and two outputs our total spectral density matrix takes the form

CH(OJ) Cro, (w) Cro, (w)
Co,1(w) Co,0,(w) Co,0,(w) (3)
CO2I (w) 00201 (W) 00202 (w)

Using the formula above for the information rate

P 1 2Re[Cro, (w)C10,(w)1Co,0,(w)] — Cor0, (W)|Cr0,(W)[? = Co,0,(w)|Cro, (W)
m(I;0) = 4w /d 1 (1 " Crr(w) C0,0,(w)Co0,0,(w) = |Co,0,(W)[? >
(4)

As a sanity check, if we remove all correlations involving the second output with either the input or
the first output, the formula reduces back to the one output formula.

m(I,0) = —i / dwln (1 — |Cr.0(w)[2/Cr.1(0)Co.0(w)) (5)

3 Standard Case

First lets start with finding the mutual information for one Gaussian distributed input and output.
We can decompose the mutual information into a sum of entropies.

MI(I;0) = H(I) + H(O) — H(I,0) (6)



Where I and O are the input and output time series respectively. Initially we will take the these time
series to be a vector of amplitudes separated in time, I = (I(t1),1(t2)),...,I(tn). Latter we will take
the limit of infinite time points for continuous signals.

Let’s first examine how to calculate the entropy of the input distribution. The entropy of the input
signal is defined in the usual way.

ZPI )Inpr(1 (7)

For Gaussian signals we define the distribution for an particular input as,

pr(D) = (2m) N2 A2 exp [<(1/2)17 - AL -] (8)

Where A, = (I(t;),I(t)) is the correlation of the input signal between different time points. For
continuous signals, this correlation can be represented by a function of the form (I(¢;), I(tx)) = S(t; —tx).
This follows from the assumption that the signal is time translation invariant.

Note: The notation (-) means the ensemble average. In other works, take the average over multiple
time series. If our system is ergodic we can define our averages as

T—o0

(I(O)I(t + 7)) = ms — Tim /0 LI ) )

Next, we want to calculate an entropy density or how much information each entry in our time series
tells us.

H(I)/N = /DI (;ln27r+ In|A| + —IT At )pI(I) (10)

H(I)/N = (14 In27 + In \I)/2 (11)

Similarly, it follows the entropy density for both the output distribution and the joint input/output
distribution as,

H(O)/N = (1 +1n27r +1n\%)/2 (12)

H(I,0)/N =1+ In2r 4+ In \LO (13)

Where In A% is the average of the log of eigenvalues. It follows that the mutual information between
the input and out put is

MI(I:0)/N = (W + W) /2 — InALO (14)

Under the assumption that the signal is time translation invariant the Fourier transform of the eigen-
values of the correlation matrix takes the form X} = 37, S (k) exp(ikw;) = Cr1(w;). Similarly, the
output spectrum is defined as Co o(w;) where w; = 27j/N.

We can calculate In AXI/A¢ by taking the limit of infinite time samples.

— dw

ln)\I/At:ZlnClJ(wj)/(NAt) %/ﬁln(}}y[(w) (15)

J
Where A ; —> o
We can deﬁned the joint probability distribution between the input and output signals as
pro(V = (1,0)) = 2m) V2|27 2exp [-(1/2)VT - 271 - V] (16)

where,

CII(w) CIO(w>

Z = COI(w) COO(w)

[\



Where Cy g(w) is the correlation spectral density between two time signals o and §. By taking a
Fourier transform of this matrix the problem of finding the eigenvalues of a 2N x 2N matrix becomes a
problem of finding the solutions to a set of linear equations.

Criw)l(w) + Crow)I(w) = Mw)I(w) (18)
Co.1(w)I(w) + Co,o(w)l(w) = Mw)O(w) (19)
This system of equations has solutions
At = (Cr,1(w) + Co,0(w) £ VD)/2 (20)
D = (Cr.1(w) — Coo(w))? + 4|Cro(w)|? (21)

Putting it all together

MI(I,O)/NAt = ﬁ/dwlnCL](w)—l—ﬁ/dwlnCo,o(w)—%/dwln(kﬁw))—%/dwln()\,(w))

7 ™

1 1 1
_ 4—/dwlnC’171(w) + —/dwlnCo,o(w) _ —/dwln (Cr1(@)Co.0) — |Crow)?)
™ 47 47

— _i /dw In (1 - [Cr0(w)?/Cr1(w)Co,0w))
(22)

4 Multiple Inputs and Outputs

We will now study the case where we have one input and multiple out puts. Using the analysis above

H(I)/N = (M + Mn2r+ W) /2 (23)
H(O)/N = (Q + QIn2r +nX°) /2 (24)
H(1,0)/N = (Q+M+ (Q+ M) ln27r+1n)\1»0) /2 (25)

Where M is the number of input signals and @) is the number of outputs. We are assuming that every
discrete time series has the same number of time points, N.

MI(I: O)/N = (m M +InAC —Tn /\1»0> /2 (26)
The correlation matrix A now takes the form
chln  Chlm
A= : . : (27)
CclzIv . CTmIm

In order to calculate In AT we can use the technique above my transforming this matrix into its Fourier
representation. We then need to solve the system of equations

Cry.n (W) h(w) + Cr, (W) (W) + -+ = AMw) 1 (w)
Cr.n (W) (W) + Cry 1 (W) I2(w) + -+ - = A(w) 2 (w)
Cran (W) I (W) + Cryy 1 (W) I (W) + -+ = Aw) I (w)



Finding the M A(w)’s is non-trivial. However, in the limit of continuous signal
_— dw dw . = dw
I _ I _ I _ A
In A\l (w)/At = Ek / o In A, (w) = / - In Ikl Ap(w) = / o Indet A(w) (28)

Where g(w) is the matrix representation of the system of equations defined above. Similarly, we can

define B(w) as the matrix that represents the spectral densities of the output distributions and Z(w) as
the full correlation matrix.
Putting everything together, we find that the information rate for M inputs and Q outputs is

0y L [ o et Zw)
m(1;0) =~ [ dwl <det2<w>det§(w)> (29)
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